Wednesday, 21 August 2013

Exam Pattern and syllabus of Indian Engineering Services(IES) Exam for ELectronis and Communiction Engineering

21:12

Exam Pattern

The written exam comprises of 2 sections. Section I consists of only objective type questions and section II comprises conventional papers. Both the papers will cover entire syllabus of the relevant engineering disciplines.
Section/Paper Duration Maximum Marks
Section I (Objective)

General Ability Test 2 Hours 200
Engineering Paper I 2 Hours 200
Engineering Paper II 2 Hours 200
Section II (Conventional)

Engineering Paper I 3 Hours 200
Engineering Paper II 3 Hours 200

Syllabus

The standard of paper in General Ability Test will be such as may be expected of an Engineering/Science Graduate. The standard of papers in other subjects will approximately be that of an Engineering Degree Examination of an Indian University. There will be no practical examination in any of the subjects.

General Ability Test

Part A: General English
The question paper in General English will be designed to test the candidate’s understanding of English and workmanlike use of words.
Part B: General Studies
The paper in General Studies will include knowledge of current events and of such matters as of everyday observation and experience in their scientific aspects as may be expected of an educated person. The paper will also include questions on History of India and Geography of a nature which candidates should be able to answer without special study.

Paper I Syllabus

1. Materials and Components 
Structure and properties of Electrical Engineering materials; Conductors, Semiconductors and Insulators, magnetic, Ferroelectric, Piezoelectric, Ceramic, Optical and Super-conducting materials. Passive components and characteristics Resistors, Capacitors and Inductors; Ferrities, Quartz crystal Ceramic resonators, Electromagnetic an Electromechanical components.
2. Physical Electronics, Electron Devices and ICs
Electrons and holes in semiconductors, Carrier Statistics, Mechanism of current flow in a semiconductor, Hall effect; Junction theory; Different types of diodes and their characteristics; Bipolar Junction transistor; Field effect transistors; Power switching devices like SCRs, CTOs, power MOSFETs; Basics of ICs - bipolar, MOS and CMOS types; basic of Opto Electronics.
3. Signals and Systems
Classification of signals and systems: System modelling in terms of differential and difference equations; State variable representation; Fourier series; Fourier representation; Fourier series; Fourier transforms and their application to system analysis; Laplace transforms and their application to system analysis; Convolution and superposition integrals and their applications; Z-transforms and their applications to the analysis and characterisation of discrete time systems; Random signals and probability, Correlation functions; Spectral density; Response of linear system to random inputs.
4. Network theory
Network analysis techniques; Network theorems, transient response, steady state sinusoidal response; Network graphs and their applications in network analysis; Tellegen’s theorem. Two port networks; Z, Y, h and transmission parameters. Combination of two ports, analysis of common two ports. Network functions : parts of network functions, obtaining a network function from a given part. Transmission criteria : delay and rise time, Elmore’s and other definitions effect of cascading. Elements of network synthesis.
5. Electromagnetic Theory
Analysis of electrostatic and magnetostatic fields; Laplace’s and Piossons’s equations; Boundary value problems and their solutions; Maxwell’s equations; application to wave propagation in bounded and unbounded media; Transmission lines : basic theory, standing waves, matching applications, misconstrue lines; Basics of wave guides and resonators; Elements of antenna theory. 
6. Electronic Measurements and instrumentation
Basic concepts, standards and error analysis; Measurements of basic electrical quantities and parameters; Electronic measuring instruments and their principles of working : analog and digital, comparison, characteristics, application. Transducers; Electronic measurements of non electrical quantities like temperature, pressure, humidity etc; basics of telemetry for industrial use.

Paper II Syllabus

1. Analog Electronic Circuits
Transistor biasing and stabilization. Small signal analysis. Power amplifiers. Frequency response. Wide banding techniques. Feedback amplifiers. Tuned amplifiers. Oscillators. Rectifiers and power supplies. Op Amp PLL, other linear integrated circuits and applications. Pulse shaping circuits and waveform generators.
2. Digital Electronic Circuits
Transistor as a switching element; Boolean algebra, simplification of Boolean functions, Karnaguh map and applications; IC Logic gates and their characteristics; IC logic families : DTL, TTL, ECL, NMOS, PMOS and CMOS gates and their comparison; Combinational logic Circuits; Half adder, Full adder; Digital comparator; Multiplexer Demultiplexer; ROM and their applications. Flip flops. R-S, J.K, D and T flip-flops; Different types of counters and registers Waveform generators. A/D and D/A converters. Semiconductor memories.
3. Control Systems
Transient and steady state response of control systems; Effect of feedback on stability and sensitivity; Root locus techniques; Frequency response analysis. Concepts of gain and phase margins: Constant-M and Constant-N Nichol’s Chart; Approximation of transient response from Constant-N Nichol’s Chart; Approximation of transient response from closed loop frequency response; Design of Control Systems, Compensators; Industrial controllers.
4. Communication Systems
Basic information theory; Modulation and detection in analogue and digital systems; Sampling and data reconstructions; Quantization & coding; Time division and frequency division multiplexing; Equalization; Optical Communication : in free space & fiber optic; Propagation of signals oat HF, VHF, UHF and microwave frequency; Satellite Communication.
5. Microwave Engineering
Microwave Tubes and solid state devices, Microwave generation and amplifiers, Waveguides and other Microwave Components and Circuits, Misconstrue circuits, Microwave Antennas, Microwave Measurements, Masers, lasers; Microwave propagation. Microwave Communication Systems terrestrial and Satellite based.
6. Computer Engineering
Number Systems. Data representation; Programming; Elements of a high level programming language PASCAL/C; Use of basic data structures; Fundamentals of computer architecture; Processor design; Control unit design; Memory organisation, I/o System Organisation. Microprocessors : Architecture and instruction set of Microprocessors 8085 and 8086, Assembly language Programming. Microprocessor Based system design : typical examples. Personal computers and their typical uses.

Written by

We are Electronics Engineers and we are here to guide ECE students.

0 comments:

Post a Comment

 

© 2013 Electro aRK. All rights resevered. Designed by Templateism

Back To Top